A parameter-free unconstrained reformulation for nonsmooth problems with convex constraints
نویسندگان
چکیده
Abstract In the present paper we propose to rewrite a nonsmooth problem subjected convex constraints as an unconstrained problem. We show that this novel formulation shares same global and local minima with original constrained Moreover, reformulation can be solved standard optimization methods if are able make projections onto feasible sets. Numerical evidence shows proposed compares favorably against state-of-art approaches. Code found at https://github.com/jth3galv/dfppm .
منابع مشابه
A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملAn Unconstrained Optimization Technique for Nonsmooth Nonlinear Complementarity Problems
In this article, we consider an unconstrained minimization formulation of the nonlinear complementarity problem NCP(f) when the underlying functions are H-differentiable but not necessarily locally Lipschitzian or directionally differentiable. We show how, under appropriate regularity conditions on an H-differential of f , minimizing the merit function corresponding to f leads to a solution of ...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملUsing quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints
Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...
متن کاملA Penalized Quadratic Convex Reformulation Method for Random Quadratic Unconstrained Binary Optimization
The Quadratic Convex Reformulation (QCR) method is used to solve quadratic unconstrained binary optimization problems. In this method, the semidefinite relaxation is used to reformulate it to a convex binary quadratic program which is solved using mixed integer quadratic programming solvers. We extend this method to random quadratic unconstrained binary optimization problems. We develop a Penal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2021
ISSN: ['0926-6003', '1573-2894']
DOI: https://doi.org/10.1007/s10589-021-00296-1